top of page

Publications

TME cells in gels image.png
Patient-designed models of the invasive edge of glioblastoma

RC Cornelison, JX Yuan, KM Tate, A Petrosky†, GF Beeghly, M Bloomfield, SC Schwager†, AL Berr†, D Cimini, FF Bafakih, JW Mandell, BW Purow, BJ Horton,  JM Munson*. A patient-designed tissue-engineered model of the infiltrative glioblastoma microenvironment, NPJ Precision Oncology.6(54) 2022. Available: https://rdcu.be/cXtxU

unnamed (3).png
Cell migration in response to flow and endothelial cell interactions

L. M. Roberts, M. J. Perez, K. N. Balogh, G. Mingledorff, J. V. Cross, and J. M. Munson, “Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment,” Cancers, vol. 14, no. 12, Art. no. 12, Jan. 2022, doi: 10.3390/cancers14123008.

unnamed (2).png
Lymphangiogenesis to be prevented with Anti-VEGFR3 therapy

A. R. Harris et al., “Platinum Chemotherapy Induces Lymphangiogenesis in Cancerous and Healthy Tissues That Can be Prevented With Adjuvant Anti-VEGFR3 Therapy,” Frontiers in Oncology, vol. 12, 2022, Accessed: Jun. 27, 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fonc.2022.801764

unnamed (1)_edited_edited.jpg
Repeatability of tumor perfusion kinetics

R. T. Woodall et al., “Repeatability of tumor perfusion kinetics from dynamic contrast-enhanced MRI in glioblastoma,” Neuro-Oncology Advances, vol. 3, no. 1, p. vdab174, Jan. 2021, doi: 10.1093/noajnl/vdab174.

unnamed.png
Gradient formation in interstitial fluid flow environments

C. A. Stine and J. M. Munson, “Autologous Gradient Formation under Differential Interstitial Fluid Flow Environments,” Biophysica, vol. 2, no. 1, Art. no. 1, Mar. 2022, doi: 10.3390/biophysica2010003.

pub3_edited.jpg
Tissue engineering models of breast cancer

J. A. McGuire et al., “Tear propagation in vaginal tissue under inflation,” Acta Biomaterialia, vol. 127, pp. 193–G. F. Beeghly, C. Thomas, J. X. Yuan, A. R. Harris, and J. M. Munson, “Designing Patient-Driven, Tissue-Engineered Models of Primary and Metastatic Breast Cancer,” Bioengineering, vol. 9, no. 2, Art. no. 2, Feb. 2022, doi: 10.3390/bioengineering9020044.

women-s-health.png
Engineering advances for women’s health

R. De Vita and J. Munson, “Special Issue on the Advances in Engineering for Women’s Health,” Ann Biomed Eng, vol. 49, no. 8, pp. 1785–1787, Aug. 2021, doi: 10.1007/s10439-021-02837-5.

pub2.png
Tear propagation in vaginal tissue

J. A. McGuire et al., “Tear propagation in vaginal tissue under inflation,” Acta Biomaterialia, vol. 127, pp. 193–204, Jun. 2021, doi: 10.1016/j.actbio.2021.03.065.

pub1_edited.jpg
Ultrasound promotes nanoparticle dispersion and transfection

Curley T., Colleen et al. Augmentation of brain tumor interstitial flow via focused ultrasound promotes brain-penetrating nanoparticle dispersion and transfection. Science Advances, vol. 6, no. 18, p. eaay1344, May 2020, doi: 10.1126/sciadv.aay1344.

Human IFF.png
Measuring interstitial fluid flow in glioblastoma patients 

Atay, Chatterjee, et al. Utilizing Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Analyze Interstitial Fluid Flow and Transport in Glioblastoma and the Surrounding Parenchyma in Human Patients. Pharmaceutics. 13 (2): 212 (2021). doi: 10.3390/pharmaceutics13020212

Curley.png
Focused Ultrasound-mediated blood brain barrier opening increases interstitial fluid flow 

Curley, et al. Augmentation of brain tumor interstitial flow via focused ultrasound promotes brain-penetrating nanoparticle dispersion and transfection. Science Advances.6(18): eaay1344 (2020). DOI: 10.1126/sciadv.aay1344 

Cora paper.png
Review: Studying fluid flow in the brain

KC Chatterjee, CA Carman-Esparza, JM Munson, Methods to measure, model, and manipulate fluid flow in the brain. Neuroscience Methods. 333: 108541. (2020) https://doi.org/10.1016/j.jneumeth.2019.108541

APB Cover.png
Mapping interstitial flow in glioblastoma with MRI
Kathryn M. Kingsmore Andrea Vaccari Daniel Abler Sophia X. CuiFrederick H. Epstein Russell C. Rockne Scott T. Acton, and  Jennifer M. MunsonMRI analysis to map interstitial flow in the brain tumor microenvironment. (2018) APL Bioengineering 18(1), 718. DOI: 10.1063/1.5023503
lymphatics_edited.png
Common chemotherapy promotes microenvironmental changes
Alexandra R Harris, Matthew J Perez, Jennifer M. Munson ,  Docetaxel facilitates lymphatic-tumor crosstalk to promote lymphangiogenesis and cancer progression. (2018) BMC Cancer 18(1), 718. DOI: 10.1186/s12885-018-4619-8
ECM_edited.png
How can we use in vitro models to inform biomaterial use in glioma?
R Chase Cornelison, Jennifer M. Munson, Perspective on Translating Biomaterials Into Glioma Therapy: Lessons From in Vitro Models. (2018) Frontiers Materials  5, 27. DOI: 10.3389/fmats.2018.00027 
Methods for tissue engineering cancer in vitro
Alexandra R Harris, Jessica X. Yuan, Jennifer M. Munson ,  Assessing multiparametric drug response in tissue engineered tumor microenvironment models, Methods (2017) 134-135: 20-31. DOI: 10.1016/j.ymeth.2017.12.010

 

Breast cancer chemotherapy response varies at the border 
Daniel K. Logsdon, Garrett F. Beeghly, Jennifer M. Munson, Chemoprotection Across the Tumor Border: Cancer Cell Response to Doxorubicin Depends on Stromal Fibroblast Ratios and Interstitial Therapeutic Transport. Cellular and Molecular Bioengineering (2017) 10(5): 463-481. DOI: 10.1007/s12195-017-0498-3

 

Quantitative analysis of the glioma microenvironment 
Jessica X. Yuan, Jennifer M. Munson, Quantitative Immunohistochemistry of the Cellular Microenvironment in Patient Glioblastoma Resections. Journal of Visualized Experiments (2017). DOI: 10.3791/56025

 

The cellular microenvironment of GBM can predict survival
Jessica X. Yuan BS, Fahad F. Bafakih MD, James W. Mandell MD, PhD, Bethany J. Horton PhD, Jennifer M. Munson PhD, Quantitative Analysis of the Cellular Microenvironment of Glioblastoma to Develop Predictive Statistical Models of Overall Survival. Journal of Neuropathology and Experimental Neurology. (2016) 75(12): 1110-1123. DOI: 10.1093/jnen/nlw090

 

Multiple mechanisms underlie interstitial flow-stimulated invasion
KM Kingsmore, DK Logsdon, DJ Floyd, BW Purow, JM Munson, Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion via CXCR4, CXCL12, and CD44-mediated mechanisms. Integrative Biology (2016) 8: 1246-1260 . DOI:  10.1039/C6IB00167J 

 

Review: Macrophages' role in angiogenesis and lymphangiogenesis 
BA Corliss, MS Azimi, JM Munson, SM Peirce, WL Murfee, Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation (2016) 23(2): 95-121. DOI:  10.1039/C6IB00167J  

 

The role of interstitial flow in cancer progression
JM Munson, AC Shieh, Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Management and Research 6: 317-328 (2014). DOI: 10.2147/CMAR.S65444

 

Pre-2014

New therapeutics against glioma invasion
JM Munson, MY Bonner, L Fried, JL Arbiser, RV Bellamkonda, Identifying new small molecule anti-invasive compounds for glioma treatment. Cell Cycle 12 (14):1-10 (2013).  

 

 

Interstitial flow enhances glioma invasion
JM Munson, RV Bellamkonda & MA Swartz, Interstitial flow increases glioma invasion via CXCR4-dependent autologous chemotaxis in a 3D microenvironment. Cancer Research 73(5): 1536-1546 (2013)

 

 

Using nanoparticles for intraoperative glioma ID
BR Roller, JM Munson, PA Santangelo, B Brahma, RV Bellamkonda, Evans blue nanocarriers visually demarcate margins of invasive gliomas, Drug delivery and Translational Research   (2013). 

 

 

New nanoparticle therapy stops glioma invasion
JM Munson, L Fried, SA Rowson, MY Bonner, L Karumbaiah, B Diaz, SA Courtneidge, UG Knaus, DJ Brat, JL Arbiser, RV Bellamkonda, Anti-invasive adjuvant therapy with Imipramine Blue enhances chemotherapeutic efficacy against glioma. Science Translational Medicine 4, 127ra36 (2012).

 

 

bottom of page